Skip to contents

All functions

ExpectationGaussianSufficientStatistics()
Gaussian transform natural parameters to E[T(X)] parameters.
ExpectationInverseGWishartSufficientStatistics()
Inverse-G-Wishart transform natural parameters to E[T(X)] parameters.
G_VMP()
Calculate
GaussianCommonParameters()
Gaussian transform natural parameters to E[T(X)] parameters.
GaussianEntropy()
Calculate entropy for Gaussian density
GaussianLikelihoodFragment()
Gaussian likelihood fragment update
GaussianPriorFragment()
Gaussian prior fragment update
InverseGWishartCommonParameters()
Inverse-G-Wishart Common parameters
InverseGWishartPriorFragment()
Inverse G-Wishart prior fragment update
InverseGammaPriorFragment()
Inverse-Gamma prior fragment update
InverseWishartPriorFragment()
Inverse Wishart prior fragment update
IteratedInverseGWishartFragment()
Iterated Inverse G-Wishart fragment update
arma2vec()
Convert arma::vec to Rcpp::NumericVector
bind_cols()
Right-bind columns of matrices from in list.
blockDiag()
Construct block-diagonal matrix from list of matrices
check.mfvb.x()
Check the `x` input to an mfvb regression function
check.mfvb.y()
Check the `y` input to an mfvb regression function
coef(<mfvb>)
Extract model coefficients posterior means
confint(<mfvb>)
Compute credible intervals for parameters of `mfvb`
dnorm_mat()
Evaluate standard normal density for matrix of variates
dot_y_minus_Xb()
E[||y - Xb||^2]
ig_E()
Inverse Gamma E[x]
ig_E_inv()
Inverse Gamma E[1/x]
ig_E_log()
Inverse Gamma E[log(x)]
ig_E_lpdf()
Calculate E_q[ln p(x)] where q(x) = IG(x | a, b) and p(x) = IG(x | a0, b0)
ig_entropy()
Inverse Gamma H[x]
inv_vech()
Calculate inverse of vech for a vector
inv_vectorise()
Calculate vec^(-1)
inv_wishart_E_invX()
Inverse Wishart E[X^-1]
inv_wishart_E_logdet()
Inverse Wishart E[log|X|]
jaakkola_jordan()
Perform Jaakkola-Jordan update of variational parameters
jaakkola_jordan_n()
Perform Jaakkola-Jordan update of variational parameters
knowles_minka_wand()
Perform Knowles-Minka-Wand update of variational parameters
knowles_minka_wand_n()
Perform Knowles-Minka-Wand update of variational parameters
lmvgamma()
Log multivariate Gamma function
mfvb.control()
Control arguments for mfvb functions
mfvb_lm()
#' mfvb_lm.fit #' #' @param x The x input #' @param y The response #' @param weights weighting #' @param subset subset of data #' @param na.action handling of na #' @param offset Offset term #' @param control Control terms #' #' @return x if all checks pass mfvb_lm.fit <- function( x = stop("no 'x' argument"), y = stop("no 'y' argument"), weights = NULL, subset = NULL, na.action = na.fail, offset = NULL, control = list(), ... ) control <- do.call("mfvb.control", control) x <- check.mfvb.x(x) y <- check.mfvb.y(x, y) mfvb_lm
mvdigamma()
Multivariate digamma function
mvgamma()
multivariate Gamma function
mvn_E_lpdf()
Calculate E_q[ln p(x)] where q(x) = MVN(x | mu, Sigma) and p(x) = MVN(x | mu0, Sigma0)
mvn_entropy()
Multivariate Normal Entropy H[x]
ph_exponential()
Normal parametric variational Bayes for Exponential PH Model.
pnorm_mat()
Evaluate standard normal cdf for matrix of variates
sample_vbdist()
Sample from MFVB fit
saul_jordan()
Perform Saul-Jordan update of variational parameters
saul_jordan_n()
Perform Saul-Jordan update of variational parameters
scaled_inv_chisq_E()
Scaled Inverse Chi squared E[x]
scaled_inv_chisq_E_inv()
Scaled Inverse Chi squared E[1/x]
scaled_inv_chisq_E_log()
Scaled Inverse Chi squared E[log(x)]
scaled_inv_chisq_H()
Scaled Inverse Chi squared H[x]
solve_two_level_sparse()
Solve two level sparse matrix problem.
summary(<mfvb>)
Summarise MFVB fit
update_vb_lm()
Update mean-field variational inference for a normal linear model.
varapproxr-package varapproxr
Variational approximations
vb_glmm()
Variational Bayes for logistic mixed model.
vb_lm()
Mean-field variational inference for a normal linear model.
vb_lmm()
Variational Bayes for linear mixed model.
vb_lmm_randint()
Variational Bayes for linear mixed model (random intercept only).
vb_lmm_randintslope()
Variational Bayes for linear mixed model (random intercept and coefficient only).
vb_lmm_randintslope_streamlined()
Variational Bayes for linear mixed model (random intercept and coefficient only, streamlined).
vb_logistic()
Perform variational inference for logistic regression model
vb_logistic_n()
Variational inference for binomial logistic regression model
vb_pois_mm()
Poisson Mixed Effects Model
vb_pois_reg()
Poisson regression
vcov(<mfvb>)
Extract model coefficient posterior covariance matrix
vech()
Calculate vech of a matrix
vmp_lm()
Variational Message Passing for Normal linear model.
woodbury()
Woodbury matrix identity