Skip to contents

Mean-field variational inference for a normal linear model.

Usage

vb_lm(
  X,
  y,
  mu0,
  Sigma0,
  a0 = 0.01,
  b0 = 0.01,
  prior = 1L,
  tol = 1e-08,
  maxiter = 100L,
  verbose = FALSE
)

Arguments

X

The design matrix

y

The response vector

mu0

The prior mean for beta

Sigma0

The prior covariance for beta

a0

The scale hyper-parameter

b0

The shape hyper-parameter

prior

The prior to be used, `1` - inverse-gamma(a0,b0), `2`- half-t(a0,b0)

tol

Tolerance for convergence of the elbo

maxiter

Maximum number of iterations allowed

verbose

Print trace of the lower bound to console. Default is FALSE.

Value

v A list of relevant outputs