Mean-field variational inference for a normal linear model.
Usage
vb_lm(
  X,
  y,
  mu0,
  Sigma0,
  a0 = 0.01,
  b0 = 0.01,
  prior = 1L,
  tol = 1e-08,
  maxiter = 100L,
  verbose = FALSE
)Arguments
- X
- The design matrix 
- y
- The response vector 
- mu0
- The prior mean for beta 
- Sigma0
- The prior covariance for beta 
- a0
- The scale hyper-parameter 
- b0
- The shape hyper-parameter 
- prior
- The prior to be used, `1` - inverse-gamma(a0,b0), `2`- half-t(a0,b0) 
- tol
- Tolerance for convergence of the elbo 
- maxiter
- Maximum number of iterations allowed 
- verbose
- Print trace of the lower bound to console. Default is - FALSE.